

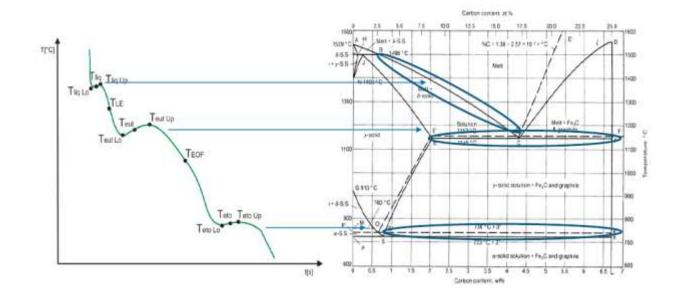
ЛИТМАШ. РОССИЯ 2021.

8-10 июня 2021 г.

ТЕРМИЧЕСКИЙ АНАЛИЗ КАК СРЕДСТВО КОНТРОЛЯ КАЧЕСТВА ЖИДКОГО ЧУГУНА

Докладчик:

АРТЕМ КАЛЯСКИН


Главный инженер металлург «Центра исследований и разработок «НПП»

ВВЕДЕНИЕ

Термический анализ основан на явлении **теплового эффекта**. **Фазовые превращения** в сплавах сопровождаются **тепловым эффектом**. На кривых охлаждения сплавов при температурах фазовых превращений наблюдаются **точки перегиба** или **температурные остановки**. Термический анализ позволяет определить критические точки.

ЦЕЛЬ ТЕРМИЧЕСКОГО АНАЛИЗА

Управление металлургическими процессами в литейном производстве сводится <u>к решению 3-х задач:</u>

- 1. Задача первая избежать образования дефектов в отливках.
- 2. Задача вторая достичь высокого выхода годного литья.
- 3. Задача третья снижение производственных затрат.

КАК МОЖНО ЭТОГО ДОСТИЧЬ?

- Идентификация ключевых параметров технологического процесса
- Определение процедуры управления ключевыми параметрами

КОНТРОЛИРУЕМЫЕ ПАРАМЕТРЫ ПРОЦЕССА

Химический состав жидкого металла:

- основные элементы (C, Si, Mn, S, P)
- легирующие элементы (Cu, Sn, Cr, Ni, Mo)
- примеси (Ti, V, Mo, Pb, Sb и др.)

20	Putt	группы элементов										
Depuca		1	п	ш	IV	v	VI	VII		VIII		
1	1	(H)						H 1.serer	He con	Jierusi		
2	2	Li nere	Be anter	B 10,011	C 18.01115	N I R. ORDER	O 13. Marie Kincangonia	F 10.0001	Ne 10,172			
3	3	Na passass	Mg	Al 50.0035 Alterente	Si padd Horsensa	P parties	S 16 Cepe 93,094	Cl st. M	Ar so, 16			
4	4	K 10	Ca 20 Sanapet	Hong Se	True Teres	State V	Ham Cr	Haptaness	Fe Bases	Co Kotasar	E Harres	
•	5	Paul Cu Meas	Silver Zn	Ga all	Ge 187	As 74.0016	Se 14,00	Br 10.000	Kr al an		WOOD	
5	6	Rb at Princes	Sr 318	an Y	the Zr	Can Nb	Months	Te bearing	tt Ru Present	the mark Rh	in Pd	
	7	17 Ag Ag	the Cd	In the state	Sn 100	Sb 111.78	Te 127.00	I IN AR	Xe 181.20		70111-00	
	8	Cs inches	Ba tot.es	Dental Late	Tones Hf	Tament Tament	Tan W Downsteam	The Re	TR OS	I'm Ir	Talenda Pt	
6	9	The Au	HO Hg	TI SOLET	Pb 82 Carrana	Bi 200,000	Po 84 Danoses	At RD	Rn 100			
7 -	10	Fr 197	Ra (100)	No Acres	Propension	int Db	ine Sg	int Bh	ion Ha	ing Mt	tio De	
1	11	Rg	112 Cn	Nh (216)	FI ***	MG TIS	Lv ***	TS 117	Og (294)			

КОНТРОЛИРУЕМЫЕ ПАРАМЕТРЫ ПРОЦЕССА

Свойства отливки и формовочной смеси:

- толщина стенки отливки
- ЛПС отливки
- скорость охлаждения в процессе затвердевания
- влажность, газопроницаемость и др. свойства формовочной смеси

НЕ КОНТРОЛИРУЕМЫЕ ПАРАМЕТРЫ ПРОЦЕССА

Физические свойства жидкого металла:

- тип кристаллизации (эвтектический, до или заэвтектический)
- количество и тип фаз, формируемых в процессе кристаллизации
- количество включений и скорость их роста
- скрытая теплота кристаллизации

ВОЗМОЖНОСТИ ТЕРМИЧЕСКОГО АНАЛИЗА

Термический анализ позволяет:

- определить С_{экв}, %
- процентное содержание углерода, кремния, Fe₃C
- степень насыщения расплава чугуна (Sc)
- процентное содержание глобул графита (Nod [%])
- плотность частиц графита [1/мм²]
- процентное содержание перлита, склонность к усадке.

КРИСТАЛЛИЗАЦИЯ ЧУГУНА

<u>Характер распределения выделений аустенита и графита зависит от следующих факторов:</u>

- химического состава металла
- шихтовых материалов (фракция шихты, степень ее окисленности, количества связанного углерода)
- температуры и продолжительности плавки исходных материалов
- времени выдержки расплава
- реакции между расплавом и футеровочными материалами
- содержания кислорода в расплаве
- состава модификатора, его расхода, способа модифицирования

КРИСТАЛЛИЗАЦИЯ ЧУГУНА

Понятие углеродного эквивалента

Обычно для чугуна: **Ceq = %C + (%Si)/3,** но имеются и др. химические элементы, оказывающие влияние, например:

$$CEQ = C + o_{,3}(Si + P) + o_{,4}S - o_{,03}Mn + o_{,11}Cu + o_{,05}Ni - o_{,075}Cr - o_{,15}Ti - o_{,10}V + o_{,22}Al + o_{,115}Sb + o_{,11}Sn + o_{,02}6Co - o_{,015}Mo.$$

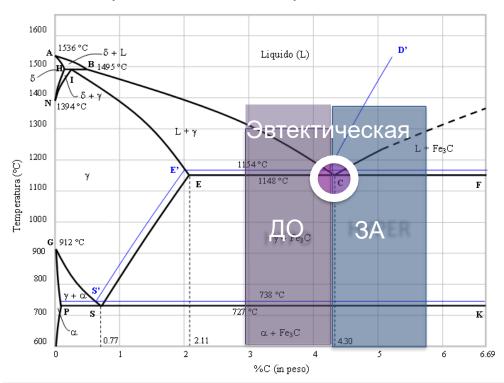
ВАЖНО! При одном и том же химическом составе чугуна (Ceq) его свойства могут быть разными. Два чугуна с одинаковым химическим составом имеют разное поведение кристаллизации

Помимо химического состава форма и распределение фаз регулируются **физическим и термодинамическим процессом.**

КРИСТАЛЛИЗАЦИЯ ЧУГУНА

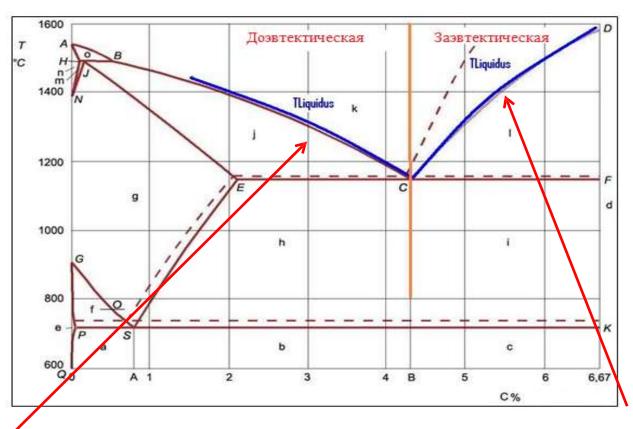
Поведение чугуна в процессе кристаллизации управляется двумя <u>основными температурами:</u>

- Температурой ликвидус Tliq
- Эвтектическая температура Temin


Использование этих температур в литейном производстве позволяет понимать динамику кристаллизации.

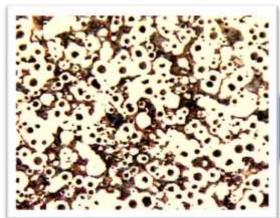
Взависимости от Tliq и Temin можно различать виды кристаллизации:

- Доэвтектическая
- Эвтектическая
- Заэвтектическая

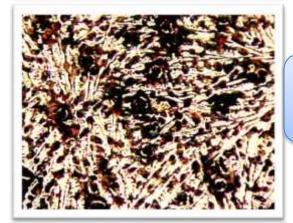


8-10 июня 2021 г.

Доэвтектическая область Если Tliq увеличивается, %С снижается.


Заэвтектическая область Если Tliq увеличивается, %С увеличивается.

ЭВТЕКТИЧЕСКАЯТЕМПЕРАТУРА ТеМіп



TeMin > 1135°C
Нормальная структура

Низкое значение TeMin говорит о низкой степени зародышеобразования.

Это может привезти к образованию отбела в тонких сечениях отливки, где имеется высокоя скорость охлаждения.

Происходит замедление первичной стадии кристаллизации (первичный аустенит или графит) изменяются параметры кристаллизации.

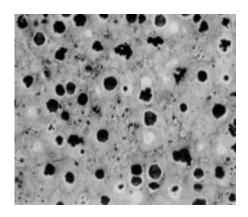
TeMin ≤ 1135°C Образование первичных карбидов

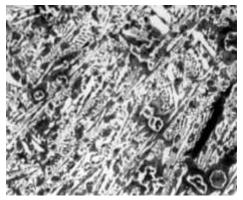
ЭВТЕКТИЧЕСКАЯТЕМПЕРАТУРА ТеМіп

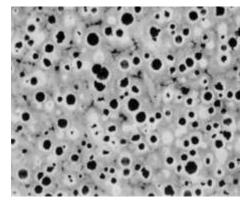
< 1135°C, степень зародышеобразования очень низкая, риск формирования первичных карбидов очень высокий

> 1145°C, степень зародышеобразования очень хорошая, риск формирования первичных карбидов отсутствует

между 1135°C и 1145°C степень зародышеобразования **не оптимальная,** и риск формирования первичных карбидов будет зависит от толщины стенки отливки

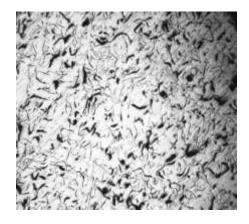


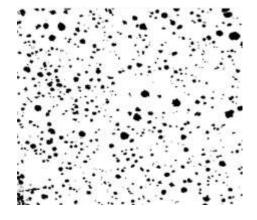



ФОРМИРОВАНИЕ ЗАРОДЫШЕЙ ГРАФИТА

Статус зародышеобразования может измениться при воздействии внешних факторов, таких как выдержка металла в печи под действием температуры, а также в ковше перед заливкой.

Динамика кристаллизации имеет большое влияние на статус образования зародышей графита.

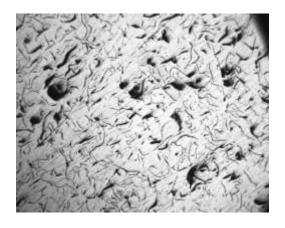




ЭФФЕКТ МОДИФИЦИРОВАНИЯ

Модифицирование металла - даёт толчок зарождению центров кристаллизации или увеличению количества уже образовавшихся.

Правильно выполненное модифицирование расплава позволяет снизить вероятность образования отбела, а также контролировать морфологию графита и его распределение.

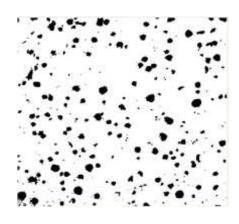


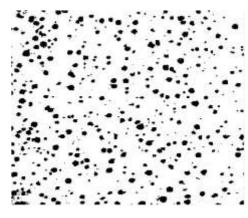


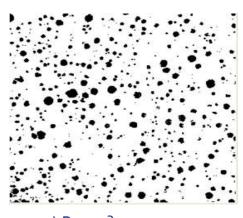
МОДИФИЦИРОВАНИЕ СЕРОГО ЧУГУНА

а) Расход Модификатора 0,15%

б) Расход Модификатора 0,25%


в) Расход Модификатора 0,40%



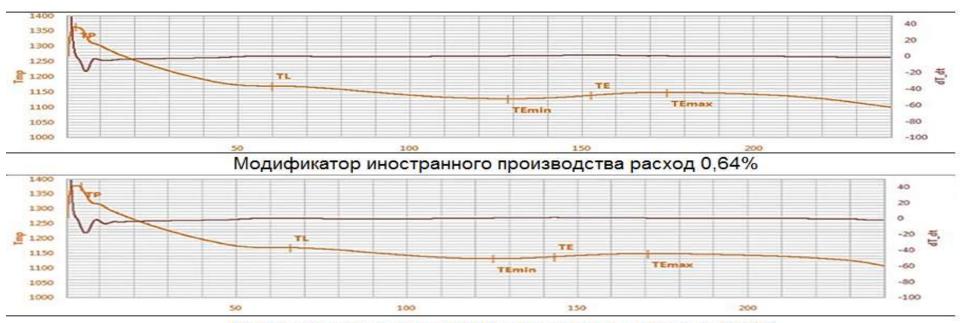

ГРАФИТИЗИРУЮЩЕЕ МОДИФИЦИРОВАНИЕ ВЫСОКОПРОЧНОГОЧУГУНА

а) Расход Модификатора 0,15%

б) Расход Модификатора 0,25%

в) Расход Модификатора 0,4%

8-10 июня 2021 г.


Исследуемые модификаторы для производства отливок из чугуна с вермикулярным графитом

Молификатор	Фракция,	Химический состав, %масс							
Модификатор	MM	Si	Ca	Ba	P3M	Al	Fe		
№1 иностранный	4-32	44-48	1,8-2,3	_	5,5-6,5	0,4-1	ост.		
№2 отечественный	1-15	44-48	1,8-2,3	_	5,5-6,5	≤ 1	OCT.		

Обработано 2 ковша расплава чугуна модификаторами №1 и 2:

- Ковш 1 №3 фр. 4-32 мм 7 кг/1100 кг расплава чугуна (0,64%).
- Ковш 2 №4 фр. 1-15 мм 7 кг/1100 кг расплава чугуна (0,64%).

Модификатор отечественного производства расход 0,64%

Температурные параметры, определяемые с помощью ТА

Мо	д-р	TP	TL	TEmin	TE	TEmax	ΔT	<mark>∆TM</mark>	CEL
	1	1362,6	1167,5	1125,9	1136,9	1146,7	24,1	20,8	4,06
4	2	1374,8	1166,4	1130,2	1136,3	1146,8	19,8	<mark>16,6</mark>	4,07

Результаты металлографического исследования

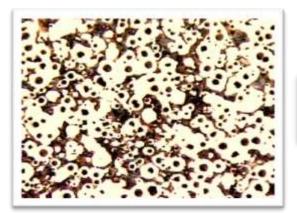
1-й кулачок

8-й кулачок

сальник

Модификатор отечественный

Модификатор иностранный



Описание параметров термического анализа

Temin является важным показателем **степени зародышеобразования** графита в чугуне

Чем выше Temin, тем лучше степень зародышеобразования

TeMin > 1135°C

Нормальная структура

TeMin ≤ 1135°C

Образование первичных карбидов

Описание параметров термического анализа

Рекалесценция - разницей между ТеМах и ТеМіп,

Rec = TeMax - TeMin [°C]

Связана с образованием скрытой теплоты и количеством сформированного графита (при хорошей степени зародышеобразования).

При оптимальном TeMin:

- Оптимальное значение для СЧ [4 9]°С
- Оптимальное значение для ВЧ [2-5]°С

выводы:

- 1. Показатели TE_{min}, TE, ΔTM свидетельствуют об зародышеобразовании, интенсивном ЧТО подтверждается результатами микроструктурного анапиза.
- 2. По результатам испытаний отмечается, отечественный модификатор для получения ЧВГ качеству обработки сопоставим ПО модификатором импортного производства.

СПАСИБО ЗА ВНИМАНИЕ!

Челябинск www.npp.ru +7 (351) 210 37 37